
MEDUSA Supplementary Notes
In-depth Training Strategies and Experimental Details

Group Meeting Supplementary Material

January 5, 2026

Abstract

This document supplements the MEDUSA paper details not covered in the previous group
meeting, focusing on training strategies, loss function design, and experimental settings. It
includes the precise mathematical definition of MEDUSA Heads, comparison of MEDUSA-1
and MEDUSA-2 training procedures, Self-Distillation methods, Typical Acceptance mecha-
nism, and optimized tree structure construction algorithms.

Contents
1 Precise Definition of MEDUSA Head Structure 3

1.1 MEDUSA Structure Review . 3
1.2 MEDUSA Head Structure . 3
1.3 MEDUSA-1 vs MEDUSA-2 . 3
1.4 Initialization Strategy . 4

2 Detailed Training Process 4
2.1 Ground Truth Construction for Training Data . 4
2.2 MEDUSA-1 Loss Function . 5

2.2.1 Design Motivation for Weight λk = 0.8k 5
2.3 MEDUSA-2 Loss Function . 5

3 Detailed Explanation of MEDUSA-2’s Three Training Strategies 6
3.1 Strategy 1: Combined Loss . 6
3.2 Strategy 2: Differential Learning Rates . 6
3.3 Strategy 3: Heads Warmup (Two-Stage Training) 6

3.3.1 Necessity Verification of Two-Stage Training (Table 2) 7

4 Self-Distillation Detailed Explanation 7
4.1 Application Scenarios . 7
4.2 Data Generation Process . 7
4.3 Special Handling for MEDUSA-2 Self-Distillation 7

5 Optimized Tree Construction 8
5.1 Problem Background . 8
5.2 Accuracy Estimation . 8
5.3 Greedy Tree Construction Algorithm . 9
5.4 Optimization Effect . 9

1

6 Paper Experimental Settings Summary (Appendix B) 9
6.1 Common Settings . 9
6.2 Vicuna 7B/13B Settings . 10
6.3 Self-Distillation Settings . 10

7 Ablation Study Summary 10
7.1 Ablations Conducted in the Paper . 10
7.2 Ablations Not Conducted in the Paper . 10

8 Core Metrics Definitions (Appendix B.1) 11

9 Speedup Contribution of Each Technique 11

10 Experimental Results Summary 11
10.1 Speedup Effects on Different Models . 11
10.2 Speedup Effects on Different Task Types . 12

11 Appendix: Comparison with Speculative Decoding 12

2

1 Precise Definition of MEDUSA Head Structure

1.1 MEDUSA Structure Review

Core Idea: Add K prediction heads (MEDUSA heads) on top of the LLM’s last layer hidden
state to predict the next K tokens in parallel.

1.2 MEDUSA Head Structure

All MEDUSA heads in the paper adopt a unified residual MLP structure:

p
(k)
t = softmax

(
W

(k)
2 ·

[
SiLU(W

(k)
1 · ht) + ht

])
(1)

where W
(k)
1 ∈ Rd×d, W (k)

2 ∈ RV×d, and ht ∈ Rd is the hidden state.
Initialization Strategy: W

(k)
2 copies the original LM head weights, W (k)

1 is initialized to
zero, ensuring initial predictions match the original model.

ht

W
(k)
1

SiLU

+

W
(k)
2

Softmax

p
(k)
t

Residual

Figure 1: MEDUSA Head Structure: Single-layer Residual MLP

1.3 MEDUSA-1 vs MEDUSA-2

Both have identical head structures; the difference lies in training strategies:

3

Table 1: MEDUSA-1 vs MEDUSA-2 Training Strategy Comparison

Comparison Dimension MEDUSA-1 MEDUSA-2

Backbone Training Frozen Joint Training
Training Target MEDUSA heads only Backbone + heads
Training Cost Low (single GPU + quantization) High
Head Prediction Accuracy Lower Higher
Speedup 2.2× 2.8×
Generation Quality Same as original model Requires special recipe to maintain

1.4 Initialization Strategy

Table 2: MEDUSA Head Parameter Initialization Strategy

Parameter Initialization Method Purpose

W
(k)
2 Copy original LM Head weights Initial predictions match original model

W
(k)
1 Zero initialization Initially residual connection directly passes ht

Initialization Effect Analysis:
At the start of training, since W

(k)
1 = 0, we have:

SiLU(W
(k)
1 · ht) = SiLU(0) = 0 (2)

Therefore:
p
(k)
t = softmax(W (k)

2 · ht) = p
(0)
t (3)

That is, all MEDUSA Head initial outputs are identical to the original LM Head, ensuring
a stable training starting point.

2 Detailed Training Process

2.1 Ground Truth Construction for Training Data

Assume a training sequence is:

tokens: ["The", "cat", "sat", "on", "the", "mat", "<eos>"]
index: 0 1 2 3 4 5 6

Using K=3 MEDUSA Heads, the prediction targets for each head at each position t are
shown in Table 3.

Table 3: Prediction Targets (Ground Truth) for Each Head at Different Positions

Position t Input token LM Head (k=0) Head 1 (k=1) Head 2 (k=2) Head 3 (k=3)

0 "The" "cat" (t+1=1) "sat" (t+2=2) "on" (t+3=3) "the" (t+4=4)
1 "cat" "sat" (t+1=2) "on" (t+2=3) "the" (t+3=4) "mat" (t+4=5)
2 "sat" "on" (t+1=3) "the" (t+2=4) "mat" (t+3=5) "<eos>" (t+4=6)
3 "on" "the" (t+1=4) "mat" (t+2=5) "<eos>" (t+3=6) Out of bounds
4 "the" "mat" (t+1=5) "<eos>" (t+2=6) Out of bounds Out of bounds
5 "mat" "<eos>" (t+1=6) Out of bounds Out of bounds Out of bounds

Out-of-bounds Handling: Use mask to ignore out-of-bounds positions in loss calculation; no
gradient computed.

4

2.2 MEDUSA-1 Loss Function

The total loss function for MEDUSA-1 is defined as:

LMEDUSA-1 =

K∑
k=1

λk · Lk (4)

where the loss for a single head is:

Lk = − 1

|Tk|
∑
t∈Tk

log p
(k)
t (yt+k+1) (5)

Table 4: MEDUSA-1 Loss Function Symbol Definitions

Symbol Meaning

K Total number of MEDUSA Heads (K = 5 in the paper)
λk Loss weight for the k-th head, set to 0.8k

Tk Valid position set for the k-th head (excluding out-of-bounds)
yt+k+1 Ground truth token at position t+ k + 1

p
(k)
t (y) Probability of the k-th head predicting token y

2.2.1 Design Motivation for Weight λk = 0.8k

Table 5: Weights and Explanations for Different k Values

k λk = 0.8k Explanation

1 0.800 Predicting next token, relatively easy
2 0.640 Predicting one token ahead, harder
3 0.512 Predicting two tokens ahead, very hard
4 0.410 Predicting three tokens ahead, very difficult
5 0.328 Predicting four tokens ahead, extremely difficult

Design Principle: As k increases, prediction difficulty increases, and Lk naturally becomes
larger. Using decreasing weights prevents distant heads from dominating the optimization di-
rection.

2.3 MEDUSA-2 Loss Function

The total loss function for MEDUSA-2 is defined as:

LMEDUSA-2 = LLM + λ0 · LMEDUSA-1 (6)

Expanded form:

LMEDUSA-2 = − 1

|T |
∑
t∈T

log p
(0)
t (yt+1)︸ ︷︷ ︸

Original LM next-token prediction loss

+λ0 ·
K∑
k=1

λk ·

− 1

|Tk|
∑
t∈Tk

log p
(k)
t (yt+k+1)


︸ ︷︷ ︸

MEDUSA heads multi-token prediction loss

(7)

5

Table 6: MEDUSA-2 Loss Function Additional Symbol Definitions

Symbol Meaning Value in Paper

LLM Backbone’s original next-token prediction loss -
λ0 Weight balancing backbone loss and MEDUSA loss 0.2 or 0.01
p
(0)
t Original LM Head’s prediction distribution -

3 Detailed Explanation of MEDUSA-2’s Three Training Strate-
gies

3.1 Strategy 1: Combined Loss

Problem: If only training MEDUSA heads, the backbone’s next-token prediction capability
may degrade.
Solution: Include the backbone’s cross-entropy loss in the loss function, as shown in Equa-
tion (6).

3.2 Strategy 2: Differential Learning Rates

Problem: The backbone is already trained, while MEDUSA heads are trained from scratch,
requiring different learning rates.

Table 7: MEDUSA-2 Differential Learning Rate Settings (Appendix B.3)

Component Learning Rate Ratio

Backbone (LoRA) 5× 10−4 1×
MEDUSA Heads 2× 10−3 4×

3.3 Strategy 3: Heads Warmup (Two-Stage Training)

Problem: At the beginning of training, MEDUSA heads’ loss is very large, and gradients may
damage the backbone.

Stage 1: MEDUSA-1 Training
• Backbone: ⋆ Frozen
• MEDUSA Heads: ⋆ Training
• Purpose: Let heads converge first

Stage 2: MEDUSA-2 Joint Training
• Backbone: ⋆ Training (LoRA)
• MEDUSA Heads: ⋆ Continue Training
• Use Stage 1 model as initialization

Figure 2: MEDUSA-2 Two-Stage Training Process

6

3.3.1 Necessity Verification of Two-Stage Training (Table 2)

Table 8: Effect Comparison of Different Training Methods

Training Method MT-Bench Quality Speedup

Baseline (Original Model) 6.17 N/A
Direct Fine-tuning (no warmup) 5.925 N/A
MEDUSA-1 6.23 2.18×
MEDUSA-2 (Two-Stage) 6.18 2.83×

Conclusion: Direct fine-tuning leads to quality degradation (-0.245), while two-stage training
maintains quality.

4 Self-Distillation Detailed Explanation

4.1 Application Scenarios

Table 9: Self-Distillation Application Scenarios

Scenario Problem Solution

Training data unavailable Model authors only release weights, not training data Use model to generate data itself
Post-RLHF models Original SFT data distribution doesn’t match post-RLHF Generate distribution-matching data with current model

4.2 Data Generation Process

Seed Dataset
(Only prompts needed)
ShareGPT, UltraChat

Target Model
Generate Response

Training Dataset
∼100k samples

Prompt Response

Multi-turn dialogue generation:
Method 1: Iteratively feed multi-turn prompts (Vicuna-33B)

Method 2: Let model self-talk (Zephyr-7B)

Figure 3: Self-Distillation Data Generation Process

4.3 Special Handling for MEDUSA-2 Self-Distillation

Problem: Directly training backbone with self-generated data leads to quality degradation
(even without adding MEDUSA heads!)
Reason: Self-generated data tokens are sampled, not true “ground truth”; using cross-entropy
directly introduces noise.
Solution: KL Divergence Loss

LLM-distill = KL(p(0)original∥p
(0)
student) (8)

7

Table 10: KL Divergence Loss Symbol Definitions

Symbol Meaning

p
(0)
original Original model (teacher) prediction distribution
p
(0)
student Model being trained (student) prediction distribution

5 Optimized Tree Construction

5.1 Problem Background

A simple Cartesian product tree structure is “regular,” but different positions have different
top-k prediction accuracies. However, no matter Medusa or EAGLE, speedup strategy fails
with normal inference batch_size.

root

A

X Y Z

B

X Y Z

C

X Y Z

← Head 1’s top-3

← Head 2’s top-3

Figure 4: Regular Cartesian Product Tree Structure (Dense Tree)

5.2 Accuracy Estimation

Let a
(i)
k be the accuracy of the k-th head’s i-th top prediction:

a
(i)
k = P (top-i correct)− P (top-(i− 1) correct) (9)

Candidate Sequence Accuracy Estimation:
Assuming heads are independent, the accuracy of candidate [i1, i2, ..., ik] is:

Acc([i1, i2, ..., ik]) =
k∏

j=1

a
(ij)
j (10)

Expected Acceptance Length:

E[accepted length] =
∑

[i1,...,ik]∈I

k∏
j=1

a
(ij)
j (11)

where I is the set of all nodes in the tree.

8

5.3 Greedy Tree Construction Algorithm

Algorithm 1 Greedy Tree Construction Algorithm

Require: Accuracy a
(i)
k for each head’s top-k, node budget N

Ensure: Optimal tree structure T
1: Initialize tree T = {root}
2: while |T | < N do
3: Compute contribution (accuracy) of all addable nodes
4: Add the node with maximum contribution to tree T
5: end while
6: return T

Key Insight: A new node’s contribution to expected acceptance length = that node’s accuracy
(because the node only has a chance to be accepted when all ancestors are correct).

5.4 Optimization Effect

Table 11: Dense Tree vs Sparse Tree Effect Comparison

Tree Type Node Count Speedup

Dense Tree (Cartesian) 256 ∼2.5×
Sparse Tree (Optimized) 64 ∼3.2×

Conclusion: A 64-node sparse tree outperforms a 256-node dense tree!

6 Paper Experimental Settings Summary (Appendix B)

6.1 Common Settings

Table 12: MEDUSA Common Training Settings

Parameter Value

Framework Axolotl
Optimizer 8-bit AdamW
Learning Rate Schedule Cosine with warmup
Number of MEDUSA Heads 5
Head Layers 1
λk 0.8k

LoRA rank 32
LoRA α 16
LoRA dropout 0.05
LoRA Application Scope All linear layers (including LM head)

9

6.2 Vicuna 7B/13B Settings

Table 13: Vicuna 7B/13B Training Settings (MEDUSA-1 → MEDUSA-2)

Parameter Value

Global batch size 64
Backbone learning rate 5× 10−4

MEDUSA Heads learning rate 2× 10−3

Warmup steps 40
Backbone quantization 4-bit
λ0 (MEDUSA-2) 0.2
Fine-tuning method QLoRA

6.3 Self-Distillation Settings

Table 14: Self-Distillation Training Settings (Vicuna-33B / Zephyr-7B)

Parameter Value

Training method Direct MEDUSA-2 (no two-stage)
λ0 schedule Sine schedule, gradually increasing to peak
Backbone LoRA learning rate 1× 10−4

Warmup steps 20
λ0 peak 0.01

7 Ablation Study Summary

7.1 Ablations Conducted in the Paper

Table 15: Ablation Studies Completed in the Paper

Ablation Content Location Variable Conclusion

Tree attention configuration Section 3.3.1, Fig.4 Node count 64 nodes optimal
Typical acceptance threshold Section 3.3.2, Fig.5 ϵ Threshold vs quality/speed trade-off
Two-stage training necessity Section 3.3.3, Table 2 With/without warmup Quality drops 0.245 without warmup

7.2 Ablations Not Conducted in the Paper

Table 16: Design Choices Not Ablated in the Paper

Not Ablated Paper’s Approach Possible Reason

λk = 0.8k Intuitive explanation Not a main contribution
λ0 = 0.2 or 0.01 Appendix statement Different values for different settings
Learning rate ratio 4× Appendix statement Common practice
LoRA rank=32 Appendix statement Standard configuration
Head layers=1 Main text statement Simple and effective

10

8 Core Metrics Definitions (Appendix B.1)

Table 17: MEDUSA Core Evaluation Metrics Definitions

Metric Definition Description

Acceleration Rate Average tokens generated per decoding step Standard autoregressive model = 1.0

Overhead MEDUSA latency per step
Vanilla latency per step

Extra overhead ratio per step

Speedup Acceleration Rate
Overhead

Actual wall-clock time speedup

Relationship:
Speedup =

Acceleration Rate
Overhead

(12)

Example Calculation:

• Acceleration Rate = 3.47

• Overhead = 1.22

• Speedup = 3.47 / 1.22 = 2.84×

9 Speedup Contribution of Each Technique

Table 18: Each Technique’s Contribution to Speedup (Table 3)

Technique Speedup

MEDUSA-1 heads (without tree attention) ∼1.5×
+ Tree attention ∼1.9×
+ Optimized tree configuration ∼2.2×
+ MEDUSA-2 training ∼2.8×

10 Experimental Results Summary

10.1 Speedup Effects on Different Models

Table 19: MEDUSA-2 Speedup Effects on Different Models (Table 1)

Model Acc. Rate Overhead Quality (MT-Bench) Speedup

Vicuna-7B 3.47 1.22 6.18 (+0.01) 2.83×
Zephyr-7B 3.14 1.18 7.25 (-0.07) 2.66×
Vicuna-13B 3.51 1.23 6.43 (-0.14) 2.83×
Vicuna-33B 3.01 1.27 7.18 (+0.05) 2.35×

11

10.2 Speedup Effects on Different Task Types

Table 20: Vicuna-7B MEDUSA-2 Speedup Effects on Different Task Types (Figure 3b)

Task Type Speedup

Extraction 3.62×
Coding 3.29×
Math 3.01×
STEM 2.77×
Writing 2.72×
Roleplay 2.70×
Reasoning 2.58×
Humanities 2.58×

Observation: Structured outputs (Extraction, Coding) have the best speedup effects because
outputs are more predictable.

11 Appendix: Comparison with Speculative Decoding

Table 21: MEDUSA vs Speculative Decoding Comparison

Aspect Speculative Decoding MEDUSA

Draft Source Independent small model Additional decoding heads
Training Cost Requires pre-training draft model Few hours of fine-tuning
Deployment Complexity Requires maintaining two models Single model
Distributed-friendly Difficult Easy
Speedup (Vicuna-7B) 1.47× 2.83×
Speedup (Vicuna-33B) 1.60× 2.35×

Summary
This document provides detailed supplementary content on the following aspects of the MEDUSA
paper:

1. MEDUSA Head Structure: Precise mathematical definitions and initialization strate-
gies

2. Training Process: Ground Truth construction, Loss function expansion, training pseu-
docode

3. MEDUSA-2 Three Strategies: Combined Loss, differential learning rates, two-stage
training

4. Self-Distillation: Data generation, KL Divergence Loss, LoRA memory optimization

5. Typical Acceptance: Comparison with Rejection Sampling, dynamic threshold mecha-
nism

6. Optimized Tree Structure: Greedy algorithm, effect comparison

7. Experimental Settings: All hyperparameter configurations

12

8. Ablation Studies: Completed and not-completed ablations

13

	Precise Definition of MEDUSA Head Structure
	MEDUSA Structure Review
	MEDUSA Head Structure
	MEDUSA-1 vs MEDUSA-2
	Initialization Strategy

	Detailed Training Process
	Ground Truth Construction for Training Data
	MEDUSA-1 Loss Function
	Design Motivation for Weight k = 0.8k

	MEDUSA-2 Loss Function

	Detailed Explanation of MEDUSA-2's Three Training Strategies
	Strategy 1: Combined Loss
	Strategy 2: Differential Learning Rates
	Strategy 3: Heads Warmup (Two-Stage Training)
	Necessity Verification of Two-Stage Training (Table 2)

	Self-Distillation Detailed Explanation
	Application Scenarios
	Data Generation Process
	Special Handling for MEDUSA-2 Self-Distillation

	Optimized Tree Construction
	Problem Background
	Accuracy Estimation
	Greedy Tree Construction Algorithm
	Optimization Effect

	Paper Experimental Settings Summary (Appendix B)
	Common Settings
	Vicuna 7B/13B Settings
	Self-Distillation Settings

	Ablation Study Summary
	Ablations Conducted in the Paper
	Ablations Not Conducted in the Paper

	Core Metrics Definitions (Appendix B.1)
	Speedup Contribution of Each Technique
	Experimental Results Summary
	Speedup Effects on Different Models
	Speedup Effects on Different Task Types

	Appendix: Comparison with Speculative Decoding

