
EAGLE Series: From Feature Prediction to
Training-Time Test

Evolution of Training Mechanisms in Speculative Sampling

Contents
1 Introduction: Why Focus on Training Details? 2

2 EAGLE-1: Feature-Level Autoregression 2
2.1 Core Idea . 2
2.2 Draft Model Architecture . 2
2.3 Training: Dual Loss Design . 3
2.4 Train-Test Gap at Inference . 3
2.5 Data Augmentation: Noise Injection . 3

3 EAGLE-2: Dynamic Draft Tree (Training-Independent) 3
3.1 Core Discovery . 4
3.2 Dynamic Tree Construction . 4

4 EAGLE-3: Breaking Free from Feature Prediction 4
4.1 Problem Diagnosis: Why Can’t EAGLE Scale? 4
4.2 What Happens If We Simply Remove Lreg? . 5
4.3 Solution: Training-Time Test (TTT) . 5

4.3.1 TTT Training Process . 5
4.3.2 TTT Attention Mask . 5
4.3.3 Deeper Implications of TTT . 6

4.4 Multi-Layer Feature Fusion . 6
4.5 EAGLE-3 Complete Inference Pipeline . 6

5 Training Configuration Comparison 7

6 Acceptance Rate Analysis 7

7 Summary: Evolution of Design Philosophy 8

8 Appendix: Draft Tree Overhead Analysis 8
8.1 The Cost of Token Embedding . 8
8.2 EAGLE’s Solution: Pruning . 8
8.3 Comparison with Medusa . 9

1

1 Introduction: Why Focus on Training Details?
The core of Speculative Sampling is the draft model — its quality directly determines the
acceleration effect. The three generations of EAGLE essentially answer one question:

Core Question: How to train a draft model that is both lightweight and accurate?

EAGLE-1 proposed feature-level autoregression, EAGLE-2 optimized the draft tree struc-
ture, and EAGLE-3 completely redesigned the training paradigm.

2 EAGLE-1: Feature-Level Autoregression

2.1 Core Idea

EAGLE-1’s starting point: predicting features is easier than predicting tokens.
Tokens are discrete and one-hot, while features are continuous and semantically rich. The

second-to-top layer feature of the Target LLM (hidden state before the LM Head) already
encodes rich contextual information. Predicting the next feature based on it is simpler than
predicting tokens from scratch.

2.2 Draft Model Architecture

EAGLE-1’s draft model is very lightweight:

ft (Target LLM feature) et+1 (token embedding)

Concat

(ft, et+1) ∈ R2×hidden_dim

FC Layer → Rhidden_dim

Single Decoder Layer

f̂t+1 (predicted feature)

LM Head (frozen)

Draft Token t̂t+2

Figure 1: EAGLE-1 Draft Model Architecture. Note: The Embedding layer and LM Head
directly reuse Target LLM parameters; only the FC and Decoder Layer need training.

Key Design: The input uses concatenation rather than summation. ft and et+1 are
concatenated into a 2× hidden_dim vector, then reduced via FC layer.

Why is et+1 needed? This is EAGLE-1’s solution to “sampling uncertainty” (contrast
with Medusa). The feature ft may correspond to multiple possible next tokens (e.g., “am” or
“always”), each leading to different subsequent features. By inputting the embedding of the
already-sampled token tt+1, the draft model knows which path to predict along.

2

2.3 Training: Dual Loss Design

EAGLE-1 uses two loss functions:

L = SmoothL1(f̂t+1, ft+1)︸ ︷︷ ︸
Lreg:Feature Prediction

+0.1× CrossEntropy(p̂t+2, pt+2)︸ ︷︷ ︸
Lcls:Token Prediction

(1)

Role of Lreg: Forces the draft model output f̂ to approximate the Target LLM’s true
feature f .

Role of Lcls: Directly optimizes the final objective — token prediction accuracy.
Reason for 0.1 weight: The classification loss is numerically an order of magnitude larger

than the regression loss.

2.4 Train-Test Gap at Inference

There is a critical issue here. Let’s examine the input differences between training and inference:

Phase Step 1 Input Step 2 Input

Training ft (from Target LLM) ft+1 (from Target LLM)
Inference ft (from Target LLM) f̂t+1 (from Draft Model!)

Table 1: EAGLE-1’s Train-Test Gap

The problem: At inference, Step 2’s input f̂t+1 is predicted by the draft model itself,
while training uses the exact ft+1. If f̂t+1 and ft+1 differ significantly, Step 2’s predictions will
be severely inaccurate.

EAGLE-1’s Solution: Use Lreg to force f̂ ≈ f , so even when using predicted values at
inference, the distribution won’t deviate too much.

Why This Approach Has Limitations

Lreg is essentially an additional constraint: requiring a small model (single Decoder
layer) to fit the large model’s high-dimensional feature space (4096 dimensions).
This regression task is inherently difficult. It limits the model’s expressive capacity and
is the core bottleneck that EAGLE-3 aims to break through.

2.5 Data Augmentation: Noise Injection

To make the model more robust in handling imprecise inputs, EAGLE-1 adds noise to features
during training:

fnoisy = f + ϵ, ϵ ∼ U(−0.1, 0.1) (2)

This enables the model to handle erroneous feature inputs.

3 EAGLE-2: Dynamic Draft Tree (Training-Independent)
EAGLE-2’s improvements are unrelated to training; it focuses on draft tree construction
strategy at inference.

3

3.1 Core Discovery

EAGLE-2 discovered that the draft model’s confidence score is highly correlated with actual
acceptance rate:

Confidence Score Actual Acceptance Rate

< 0.05 ≈ 0.04
0.45− 0.55 ≈ 0.50
> 0.95 ≈ 0.98

This means: Without calling the Target LLM, we can estimate which draft tokens
are more likely to be accepted based solely on the draft model’s confidence.

3.2 Dynamic Tree Construction

Based on this discovery, EAGLE-2 introduces the concept of Value:

Vi =
∏

tj∈Path(root,ti)

cj (3)

i.e., a node’s Value equals the product of all confidences along the path from root to that node.
Expansion Phase: Select top-k nodes with highest Value at each layer for further expan-

sion.
Reranking Phase: Sort all nodes by Value and select top-m as the final draft.
Key Advantage: EAGLE-2 requires no additional training; it directly reuses EAGLE-

1’s weights while achieving 20%-40% acceleration improvement.

4 EAGLE-3: Breaking Free from Feature Prediction

4.1 Problem Diagnosis: Why Can’t EAGLE Scale?

EAGLE-3’s starting point is an experimental observation: increasing training data provides
very limited improvement for EAGLE-1/2.

1 2 4 8
3

3.5

4

4.5

Training Data Size (relative to ShareGPT)

Sp
ee

du
p

EAGLE-2 (saturates)
EAGLE-3 (linear growth)

Figure 2: Scaling Law Comparison. EAGLE-2’s performance quickly saturates, while EAGLE-3
continues to benefit from more data.

Why is this? EAGLE-3 team’s analysis: Lreg is the bottleneck.
Feature prediction essentially asks a small model to “imitate” the large model’s internal

representations. This constraint is too strong — the small model has limited capacity and
cannot precisely fit the large model’s 4096-dimensional feature space regardless of data amount.

4

4.2 What Happens If We Simply Remove Lreg?

A natural idea: since Lreg is the bottleneck, just remove it and keep only Lcls.
Experimental Results:

• 0-α (first draft token acceptance rate): significantly improved (0.78 → 0.80)

• 1-α (second draft token acceptance rate): dramatically dropped (0.68 → 0.35)
Why? Without Lreg’s constraint, the draft model’s output ât+1 differs greatly from the true

ft+1. Training Step 2 sees ft+1, but inference sees ât+1 — severe distribution mismatch.

4.3 Solution: Training-Time Test (TTT)

EAGLE-3’s core innovation: simulate the multi-step inference process during training.
Core Idea

Since inference Step 2 uses its own output ât+1 as input, do the same during training!
Let the model directly learn to handle its own (possibly inaccurate) hidden states.

4.3.1 TTT Training Process

Using the sequence “How can I” as an example:
Step 1 (Standard Training):

• Input: gcan (from Target LLM) + eI

• Output: hidden state aI, predicted token distribution

• Compute L(1)
cls

Step 2 (Simulated Inference):
• Input: aI (from Step 1’s output!) + edo

• Output: hidden state ado, predicted token distribution

• Compute L(2)
cls

• Key: gradients backpropagate to Step 1
Step 3 and beyond: Continue using own outputs as inputs, simulating deeper inference.
Total Loss: L = L(1)

cls + L(2)
cls + L(3)

cls + . . .

4.3.2 TTT Attention Mask

Since Step 2+ inputs form a tree structure (each position may have multiple candidates), the
attention mask requires special handling:

Step 1: Standard Lower Triangular
How

can

I

Step 2+: Sparse Diagonal

Original Data Step 1 Output

Figure 3: TTT Attention Mask. In Step 2+, each query only attends to original data and its
corresponding position (ancestor path).

5

Implementation Optimization: Step 2+’s mask is diagonal, allowing vector dot products
instead of matrix multiplication for attention score computation.

4.3.3 Deeper Implications of TTT

Through TTT, gradients backpropagate from Step 2, Step 3 all the way to Step 1. This forces
the model to learn:

Compress the key information needed for subsequent token prediction into the hidden
state a for passing forward.

a no longer needs to “look like” the Target LLM’s feature; it only needs to serve as the draft
model’s own “notes,” recording information useful for subsequent predictions.

4.4 Multi-Layer Feature Fusion

EAGLE-1 only uses the Target LLM’s top-layer feature (hidden state before LM Head). But
top-layer features mainly encode “next token” information; predicting “next-next token” may
require information from middle/lower layers.

EAGLE-3 fuses multi-layer features:

g = FC ([l;m;h]) ∈ Rk (4)

where l, m, h are hidden states from low, middle, and high layers respectively.
Why couldn’t EAGLE-1 do this?
Because EAGLE-1 has Lreg, requiring outputs to approximate a specific layer’s (top layer)

feature. After multi-layer fusion, outputs cannot correspond to any single layer, making the loss
incomputable.

After EAGLE-3 removes Lreg, input design becomes completely free.
Significance of Multi-Layer Fusion:
Although only Step 1 can use g (Step 2+ uses a):

1. Step 1 is the root of the entire draft tree; its quality affects all branches

2. Step 1’s KV cache is reused by subsequent steps; information in g propagates through
attention

3. Experiments show (EAGLE-3 Table 2) multi-layer fusion brings an additional 0.58x speedup
improvement

4.5 EAGLE-3 Complete Inference Pipeline

Using Prompt “How can” with Target LLM just generating “I” as an example:

gcan

From Target LLM

eI

FC + Decoder

aI “do”
LM Head

Step 1

aI

From Step 1

edo

FC + Decoder

ado “it”
LM Head

Step 2+

Pass

Figure 4: EAGLE-3 Inference Pipeline. Step 1 uses Target LLM’s fused feature g; Step 2+ uses
its own output a.

6

Key Distinction:

• Step 1: Input comes from Target LLM’s multi-layer fused feature g

• Step 2+: Input comes from draft model’s own hidden state a

This is the inherent constraint of speculative sampling: the draft phase cannot call the Target
LLM (otherwise there’s no acceleration), so subsequent steps can only use their own outputs.

5 Training Configuration Comparison

Table 2: EAGLE-1 vs EAGLE-3 Training Comparison

Configuration EAGLE-1 EAGLE-3

Loss Function Lreg + 0.1× Lcls Only Lcls
Training Input All from Target LLM Step 1 from Target, Step 2+ from self
Input Feature Top-layer feature f Multi-layer fused feature g
Output Constraint Must approximate Target’s f Unconstrained, free vector a

Dataset ShareGPT (68K) ShareGPT + UltraChat-200K (≈8x)
Data Generation Fixed dataset Call Target Model to generate
Learning Rate 3e-5 5e-5
Optimizer AdamW AdamW
(β1, β2) (0.9, 0.95) (0.9, 0.95)
Gradient Clipping 0.5 0.5

Scaling Law No (saturates) Yes (linear growth)

6 Acceptance Rate Analysis
The n-α metric measures: acceptance rate when the input contains n hidden states from the
draft model itself.

Table 3: Acceptance Rate Comparison (MT-bench, LLaMA-Instruct 3.1 8B)

Method 0-α 1-α 2-α 3-α 4-α 5-α

EAGLE 0.78 0.68 0.64 0.62 0.60 0.58
EAGLE-3 0.80 0.75 0.73 0.72 0.71 0.70

Key Observations:

• EAGLE: Acceptance rate drops rapidly as n increases (0.78 to 0.58)

• EAGLE-3: Acceptance rate remains nearly constant (0.80 to 0.70)

This demonstrates that TTT effectively resolves the train-test gap: the model learns how to
handle its own outputs.

7

7 Summary: Evolution of Design Philosophy

Table 4: EAGLE Series Technical Evolution

Feature EAGLE-1 EAGLE-2 EAGLE-3

Core Innovation Feature Autoregression Dynamic Draft Tree Training-Time Test
Feature Prediction Loss ✓ ✓ Removed
Input Feature Top-layer Top-layer Multi-layer Fusion
Use Own Output in Training × × ✓
Requires Additional Training - No Yes
Scaling Law × × ✓
Speedup (Vicuna 13B) 3.07x 4.26x 5.58x

Core Insight

EAGLE-1: Make draft model “imitate” Target LLM’s feature space → Limited by re-
gression task difficulty
EAGLE-3: Let draft model “freely express,” only caring about final token prediction →
Unleashes model potential, unlocks Scaling Law
From “an imitator that must mimic the large model’s features” to “a successor that only
borrows from the large model initially, then develops independent optimized thinking.”

8 Appendix: Draft Tree Overhead Analysis

8.1 The Cost of Token Embedding

The introduction of et+1 (token embedding) brings computational overhead. Since each branch
has a different token embedding, they cannot share computation.

Table 5: Draft Tree Node Count (assuming top_k=3)

Depth Nodes at This Layer Cumulative Nodes

1 1 1
2 3 4
3 9 13
4 27 40
5 81 121
6 243 364

Fully expanded, this would yield 364 nodes — clearly too many.

8.2 EAGLE’s Solution: Pruning

EAGLE-1: Uses static pruning with predefined tree structure, limiting total nodes to around
40-60.

EAGLE-2: Uses dynamic pruning:

• Expansion phase: Only expand top-k (e.g., 10) nodes with highest Value per layer

• Reranking phase: Keep only top-m (e.g., 48-60) nodes total

8

Table 6: EAGLE-2 Hyperparameter Configuration

Target LLM Size Total Nodes (m) Tree Depth Expansion Top-k

7B / 8B 60 6 10
13B 50 6 10
70B 48 6 10

8.3 Comparison with Medusa

Table 7: EAGLE vs Medusa: Draft Overhead Trade-off

Feature Medusa EAGLE

Draft Method Parallel independent heads Autoregressive + token embedding
Forward Passes for Draft 1 depth times
Solves Sampling Uncertainty × ✓
Acceptance Rate ∼0.6 ∼0.8

Trade-off : EAGLE exchanges more draft overhead for higher acceptance rate. Experiments
show this trade-off is worthwhile — EAGLE’s overall speedup still outperforms Medusa.

This also explains why EAGLE’s draft model must be very lightweight (single Decoder layer)
— it needs multiple forward passes, each processing multiple branches.

9

	Introduction: Why Focus on Training Details?
	EAGLE-1: Feature-Level Autoregression
	Core Idea
	Draft Model Architecture
	Training: Dual Loss Design
	Train-Test Gap at Inference
	Data Augmentation: Noise Injection

	EAGLE-2: Dynamic Draft Tree (Training-Independent)
	Core Discovery
	Dynamic Tree Construction

	EAGLE-3: Breaking Free from Feature Prediction
	Problem Diagnosis: Why Can't EAGLE Scale?
	What Happens If We Simply Remove Lreg?
	Solution: Training-Time Test (TTT)
	TTT Training Process
	TTT Attention Mask
	Deeper Implications of TTT

	Multi-Layer Feature Fusion
	EAGLE-3 Complete Inference Pipeline

	Training Configuration Comparison
	Acceptance Rate Analysis
	Summary: Evolution of Design Philosophy
	Appendix: Draft Tree Overhead Analysis
	The Cost of Token Embedding
	EAGLE's Solution: Pruning
	Comparison with Medusa

